Back to Library

Nitric oxide inhibits establishment of macroschizont-infected cell lines and is produced by macrophages of calves undergoing bovine tropical theileriosis or East Coast fever

Published by:
Publication date
20/02/1995
Language:
English
Type of Publication:
Articles & Journals
Focus Region:
Global
Focus Topic:
Health & Diseases
Type of Risk:
Biological & environmental
Commodity:
Livestock
Source
http://dx.doi.org/10.1111/j.1365-3024.1995.tb00971.x
Author
Abraham, A.; Bell Sakyi, L.J.; Brown, C.G.D.; Preston, P.M.; Visser, A.E.

Nitric oxide (NO) was produced when bovine peripheral blood mononuclear cells (PBMC) or purified, adherent PBMC (macrophages) were incubated in vitro with bovine recombinant interferon gamma (Bo rIFN-?). NO was produced by cells from naive, uninfected calves as well as by cells from cattle either infected with or recovered from infection with Theileria annulata or Theileria parva. PBMC of cattle undergoing tropical theileriosis (T. annulata infection) or East Coast fever (T. parva infection) synthesized NO spontaneously in vitro. NO was also induced when PBMC of immune, but not of naive, cattle were cultured with T. annulata macroschizont-infected cell lines. Macrophages alone were not stimulated to produce NO by such infected cells. In vitro establishment of macroschizont-infected cell lines was suppressed either by incubating sporozoites with S-nitroso-N-acetyl-DL-penicillamine (SNAP), a NO releasing molecule, prior to invasion of PBMC or by pulsing developing cultures of trophozoite-infected cells with SNAP. Proliferation of established macroschizont-infected cell lines was not affected by SNAP. Taken together with the well documented roles of NO in neurotransmission, vasodilatation, cell and tissue damage and immunosuppression, the results presented here indicate that NO may not only protect cattle against T. annulata and T. parva but, if produced in excess, play a prominent role in the pathogenesis of tropical theileriosis and East Coast fever.