Back to Library

Expression of avrPphB, an Avirulence Gene from Pseudomonas syringae pv. phaseolicola, and the Delivery of Signals Causing the Hypersensitive Reaction in Bean

Published by:
Publication date
Type of Publication:
Articles & Journals
Focus Region:
Focus Topic:
Health & Diseases
Type of Risk:
Biological & environmental
Type of Risk Managment Option:
Risk assessment
Bennett, M.; Jenner, C.; Lyons, N.; Mansfield, J.; Puri, N.; Stewart, R.; Taylor, J.

Protein production encoded by the avirulence gene avrPphB from Pseudomonas syringae pv. phaseolicola was examined. Incorporation of [35S]-labeled methionine into the AvrPphB protein indicated processing of the full-length peptide in Escherichia coli to give a major 28-kDa product. The 28-kDa native peptide was isolated from E. coli following over-expression of avrPphB and found not to elicit the hypersensitive response (HR) after infiltration into bean leaves. Antiserum raised to the 28-kDa peptide allowed expression of avrPphB and processing of AvrPphB protein to be examined in P. syringae pv. phaseolicola; immunoreactive peptides of both 35 and 28-kDa were detected in races 3 and 4 (which contain avrPphB) only after induction in minimal medium + 10 mM sucrose. Antiserum raised to a synthetic peptide, derived from the sequence of the 62 amino acids found to be cleaved from the full-length AvrPphB protein, revealed the accumulation of peptides corresponding to the smaller cleavage products, in both E. coli and P. syringae pv. phaseolicola. Biochemical localization experiments showed that all AvrPphB peptides were cytoplasmic in P. syringae pv. phaseolicola. No AvrPphB peptides were produced in a hrpL mutant unless expression of the gene was directed by a strong vector promoter; induction kinetics similar to wild type were observed in a hrpY – strain, although it also failed to cause a confluent HR. Growth of P. syringae pv. phaseolicola under inducing conditions removed the requirement for rifampicin-sensitive mRNA synthesis by bacteria to allow HR development (the induction time) in bean and lettuce leaves. Constitutive expression of hrpL reduced but did not remove the induction time. Expression of the hrp gene cluster of P. syringae pv. phaseolicola from plasmid pPPY430 in E. coli enabled phenotypic expression of avrPphE (also carried by pPPY430) and avrPphB (if over-expressed from pPPY3031). Despite constitutive expression of the hrp and avr genes in E. coli, a protein synthesis dependent induction time was still required for development of the HR in bean genotypes with matching resistance genes. The significance of processing for the function of AvrPphB peptides and the delivery of elicitors of the HR are discussed.