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Abstract 

Adverse weather conditions can affect both crop yield quantit y and yield qualit y. In wheat production, 
especially the risk of a downgrading due to low baking quality, as indicated by the Hagberg Falling Num- 
ber, can cause large economic losses after precipitation events. We here estimate precipitation effects 
on the risk of such a downgrading and quantify the resulting economic losses. To this end, we leverage 
a panel dataset from the Swiss wheat varieties trial network (N = 1,859) and high-quality weather data. 
We use a fixed effects estimation framework to estimate precipitation effects and simulate economic 
losses. We find that precipitation close to harvest significantly increases the risk of a downgrading due 
to low baking quality. Moreover, downgrading events cause large revenue reductions of up to 1,445 
Swiss francs per hectare. This adds new economic insights, highlights the role of weather-dependent 
crop quality, and provides a basis to improve risk management. 
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 Introduction 

dverse weather conditions are among the most important production risks in crop produc- 
ion and climate change is amplifying these risks (Barnabás et al. 2008 ; Lobell et al. 2011a ;
ay et al. 2015 ; Lesk et al. 2016 ; Ortiz-Bobea et al. 2021 ). Adverse weather conditions
ead to reductions of crop yield quantity (Schlenker and Roberts 2009 ; Trnka et al. 2014 ;
ebber et al. 2018 ), and additionally can reduce price-relevant crop quality (Pereyra-Irujo
nd Aguirrezábal 2007 ; Lanning et al. 2011 ; Diacono et al. 2012 ). This puts farmers’ prof-
tability at risk but has also implications for other actors such as seed traders and breeders,
ownstream actors such as processors and retailers, insurance providers, and policymakers.
conomic assessments of weather risks for price-relevant crop quality are therefore essential 
o improve decision making in the agri-food sector. 
The Author(s) 2024. Published by Oxford University in association with European Agricultural and Applied
conomics Publications Foundation. This is an Open Access article distributed under the terms of the Creative
ommons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which 
ermits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is 
roperly cited. For commercial re-use, please contact journals.permissions@oup.com 
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We here provide an assessment of weather-induced wheat quality losses. More specifically,
e identify precipitation effects on the risk of downgrading due to low baking quality, as 

ndicated by the Hagberg Falling Number, and quantify its economic relevance. To this 
nd, we use a panel dataset from the official Swiss winter wheat varieties trial network 
onsisting of 1,859 observations of commercially available winter wheat varieties recorded 
t ten representative sites from 2008 to 2019. 
Previous research has provided economic risk assessments of weather effects on price- 

elevant crop quality, but it remains a comparatively unexplored research area. For example,
awasaki and Uchida (2016) highlight weather-dependent quality effects on the economic 
erformance of rice production in Japan, Lyman and Nalley (2013) and Nalley et al. (2016) 
f rice production in the USA, Dalhaus et al. (2020) of apple production in Switzerland,
nd Ramsey et al. (2020) of peanut production in the USA. A risk assessment of weather- 
ependent quality effects on the economic performance of wheat production remains an 
pen research area. However, wheat is among the most widely grown crops in the world 
nd is the most widely grown crop in European and Swiss agriculture (FOAG 2021 ). The 
roducer price of wheat also depends on weather-dependent quality at harvest (Mares and 
rva 2014 ). Previous research has identified that especially precipitation close to harvest 

an reduce the baking quality of bread and biscuit wheat and results in a downgrading to 
nimal feed wheat (Biddulph et al. 2008 ; Mares and Mrva 2008 ; Barnard and Smith 2012 ).
lobally, such a downgrading is expected to be among the economically most important 
uality-related risks for wheat producers. For example, it causes annual losses of up to 1 
illion US dollars because animal feed wheat has a lower producer price than bread and 
iscuit wheat (Bewley et al. 2006 ; Moore et al. 2017 ; Shao et al. 2018 ; Cannon et al. 2022 ).
or instance, in the US Pacific Northwest, there is a price reduction of $0.25 per bushel 
or every 25 s below 300 s (Steber 2017 ), of $AUS 20–30 per ton for a Hagberg Falling
umber below 300 s in Australia (Biddulph et al. 2008 ; Newberry et al. 2018 ). In the here 
sed case study of Swiss wheat production, there is a price reduction of up to 30 per cent 
or a Hagberg Falling Number below 220 s (swiss granum 2021 , 2022 ). 
This paper has two objectives. Firstly, we estimate precipitation effects on the risk of a 

owngrading of high-quality bread and biscuit winter wheat to lower quality animal feed 
heat due to a precipitation induced low Hagberg Falling Number, which is an interna- 
ionally standardized indicator for low baking quality in the industry. Secondly, we assess 
he economic relevance of such a downgrading for wheat producers by simulating resulting 
evenue reductions. Switzerland is a highly relevant case study, as Swiss wheat production 
s highly exposed to wheat quality-related risks. For example, many winter wheat produc- 
rs throughout Switzerland experienced Hagberg Falling Number scores below the critical 
hreshold of 220 s in the rainy summer of 2014 so that approximately 25 per cent of the 
ational bread and biscuit wheat harvest was downgraded to feed wheat (swiss granum 

021 ). 
We here leverage a panel dataset from the official Swiss winter wheat varieties trial net- 
ork because such data are insightful when data from practice are limited (Lobell et al.
011b ), as it is the case for the Hagberg Falling Number in winter wheat production. To 
stimate precipitation effects on the risk of a downgrading due to a low Hagberg Falling 
umber, we build a two-way fixed effects (variety and site fixed effects) reduced-form model 
ased on agronomic findings (see Section 2.3 Agronomic background) that also controls for 
emperature exposure. The model supports the identification of precipitation effects because 
t uses only exogenous explanatory weather variables, controls for a myriad of potential 
onfounders and implicitly accounts for short-term management adaptations as a response 
o risk exposure (e.g. harvest before full ripeness when precipitation is forecasted). Field 
rial data support the identification of precipitation effects because we can match high- 
uality weather data with exact field locations and exclude potentially confounding effects 
f changing input and output prices because field management is standardized and follows 
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est practice (see Section 4.1 ). To assess the economic relevance of a downgrading risk, we
imulate resulting revenue reductions and illustrate the historical frequency of downgrading 
vents. 
This paper has three core results. First, precipitation close to harvest, i.e. when precipita-

ion amounts barely affect wheat yield quantity (Barnabás et al. 2008 ; Farooq et al. 2014 ;
arga et al. 2015 ), increases the risk of a downgrading of bread and biscuit wheat to animal
eed wheat. More specifically, we estimate that each millimeter of precipitation aggregated 
ver the 31 days prior to harvest increases the risk of a downgrading by approximately
.1 percentage points. Historically, this has increased the risk of a downgrading by up to
6.74 percentage points in our sample. Second, a downgrading to feed wheat due to a low
agberg Falling Number causes large economic losses for farmers. We estimate historical 
evenue reductions of up to 1,445 Swiss francs per hectare in our sample (representing ca.
0 per cent of the total expected revenue). Third, such downgrading events occur rarely and
ot on a regular basis. The risk of a downgrading due to a low Hagberg Falling Number can
e idiosyncratic (only few observations with a downgrading within a location and year) or
ystemic (many observations with a downgrading within and across locations in the same
ear). On average, we find that the expected loss due to precipitation-induced downgrading
f wheat is 52 Swiss francs per hectare across all observations. 
The remainder of the paper is structured as follows. We first provide an economic and

gronomic background of the risk of a downgrading due to a low Hagberg Falling Number
nd introduce the Swiss wheat market. Building on this, we present the estimation and
dentification strategy used to quantify precipitation effects on the risk of a downgrading
nd simulation of revenue reductions. We then put forward our data section, followed by
he results. Next, we discuss the external validity of our findings and management options to
ope with the risk of a downgrading at farm level. Finally, we end the paper with concluding
emarks and policy recommendations. 

 Background 

his section presents background information of how crop quality affects farmers’ profits 
hrough producer prices, introduces the Swiss wheat market, and provides an agronomic 
ackground about weather effects on the Hagberg Falling Number, the industry’s standard- 
zed indicator for low baking quality, also with the aim to motivate our model selection. 

.1 Economic background 

rop quality is an important determinant of producer prices ultimately affecting profits 
Dalhaus et al. 2020 ). The effect of low crop quality on profits is illustrated in Equation (1) ,
n which �πit denotes the difference in crop profits of farmer i in year t due to a quality-
nduced change in the producer price �pit (Dalhaus et al. 2020 ) and under the ceteris paribus
ssumption. 

�πit = �pit ( qit ) ∗ yit − �cit ( qit ) (1) 

The change in the producer price �pit depends on the crop yield quality q (Stiegert and
lanc 1997 ; Dalhaus et al. 2020 ; Ramsey et al. 2020 ; Roberts et al. 2022 ) and is multiplied
y the crop yield quantity yit , i.e. changes in yield quality can affect revenues. A potential
hange in production costs �cit can result from changes in field management that affect crop
ield quality q . Next to management decisions, exogenous and random weather conditions
an also affect crop yield quality (e.g. Lanning et al. 2011 ; Barnard and Smith 2012 ; Dalhaus
t al. 2020 ). In the reverse direction, weather conditions and field management can affect
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roduction costs and crop yield quality ultimately reflected in the producer price and thereby 
ffect crop profits. 
In the context of this paper, we focus on Swiss winter wheat production, where bread and 

iscuit wheat with a Hagberg Falling Number below 220 s is downgraded to animal feed 
heat. This causes an abrupt price reduction �pit , thereby reducing revenues and ultimately 
rofits.1 The Hagberg Falling Number is a downside risk, i.e. there is no price reward for 
est results above 220 s. 

.2 The Swiss wheat market 

heat is the most widely grown crop in Switzerland and covers approximately 50 per cent 
f crop land (FOAG 2021 ). The Swiss wheat market is highly protected, i.e. there are quotas 
nd high tariffs for wheat imports (Esposti and Listorti 2018 ). To establish prices within 
witzerland, the national industry organization publishes producer reference prices, which 
re negotiated within the industry organization each year prior to the planting season.2 

hese reference prices are not binding but a good indicator of average annual producer 
rices, i.e. prices vary only little between grain elevators and throughout the growing season,
ven in case of large amounts of downgraded wheat. Unlike in less protected markets (see 
.g. Roberts et al. 2022 ), the prices also show very little volatility after a shock (see also 
igure A3 in the online Appendix). There exist several price classes in which approved wheat 
arieties are allocated to, depending on the production type (e.g. nonorganic, organic, low- 
r no-pesticide production practices and labels), purpose of use (bread, biscuit or feed),
uality potential, and general agronomic performance potential.3 Swiss wheat producers 
se a spectrum of varieties from different price classes in practice (swiss granum 2020),
lso reflecting farm-specific wheat production conditions (Möhring and Finger 2022 ). Our 
nalysis focuses on nonorganic wheat production (Möhring and Finger 2022 ). Wheat prices 
re highest for bread wheat varieties and these are subdivided into the price classes Top 
highest price), I and II (lowest price for bread varieties). There is a single price class for 
iscuit wheat varieties with a price level similar to a bread variety in price class II . Varieties
llocated to the price class feed wheat have the lowest price, i.e. approximately a third less 
han varieties in class Top and a quarter less than varieties in class Biscuit at 2019 price 
evels. Figure A3 in the online Appendix illustrates historical producer reference prices for 
ach price class and shows the little price fluctuation between years. 
Swiss wheat producers face little market price risks due to the high market protection 

Esposti and Listorti 2018 ); however, varieties allocated to the bread and biscuit price classes 
re subject to a potential downgrading to the animal feed price class due a Hagberg Falling 
umber below 220 s (swiss granum 2022 ). More specifically, the Hagberg Falling Number 

s evaluated for each harvest delivery at grain elevators following Hagberg (1960) . Note 
hat blending harvests with different Hagberg Falling Numbers is usually not done because 
ven small amounts of grain affected by a low Hagberg Falling Number can reduce the 
aking quality and is therefore considered as too risky (Steber 2017 ). Additionally, some 
rain elevators have small price rewards or deductions for the protein content (only for 
rice class Top ) and the test weight (also referred to as specific weight or hectoliter weight).
hese rewards and deductions, if there are any, do not change producer reference prices by 
ore than 4 per cent and do not affect the decision whether a harvest delivery is downgraded 
o the animal feed price class (swiss granum 2022 ). 

.3 Agronomic background 

he Hagberg Falling Number is the internationally standardized industry indicator for low 

aking quality, although its suitability has been debated in the scientific literature (Newberry 
t al. 2018 ; Cannon et al. 2022 ). More specifically, the Hagberg Falling Number mea- 
ures the time in seconds it takes for a standardized stirrer to fall through a standardized 

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae008#supplementary-data
https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae008#supplementary-data
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ixture made of water and flour (Hagberg 1960 ). Bread made of winter wheat that scores
 low Hagberg Falling Number can have discolored loaves of low volume, poor texture,
nd poor sliceability (Chamberlain et al. 1981 ; Olaerts et al. 2016 ) and is consequently not
urchased by consumers. There are several weather-dependent causes for a low Hagberg 
alling Number, including pre-harvest sprouting, late-maturity amylase, and retained peri- 
arp amylase (Cannon et al. 2022 ), and these causes can occur simultaneously (Clarke et al.
005 ). 
Pre-harvest sprouting, which is the germination of wheat kernels in the spike of the plant

rior to harvest, is the main cause for a low Hagberg Falling Number in temperate climates
Nielsen et al. 1984 ; Mares 1993 ; Lunn et al. 2002 ) and is reported as the major cause
or low Hagberg Falling Number scores in Switzerland (Swiss granum 2021 ). Especially
recipitation during the growth phases of grain development to harvest, i.e. a few weeks
rior to harvest, can drastically reduce the Hagberg Falling Number (King and Wettstein-
nowles 2000 ; Biddulph et al. 2008 ; Mares and Mrva 2008 ; Barnard and Smith 2012 ).
oreover, precipitation can cause unfavorable harvest conditions resulting in delayed har- 
ests, which increases the risk of a Hagberg Falling Number that is too low (Olaerts et al.
016 ). Late-maturity amylase and retained pericarp amylase are associated with temper- 
ture shocks (Cannon et al. 2022 ), especially after exposure to hot temperatures close to
arvest (Biddulph et al. 2008 ; Barnard and Smith 2012 ). 
The occurrence of pre-harvest sprouting, late-maturity amylase, and retained pericarp 

mylase also strongly depend on the genetic composition of a wheat variety (Biddulph et al.
007 , 2008 ; Mares and Mrva 2008 ; Barnard and Smith 2012 ; Ji et al. 2018 ; Wang et al.
020 ) and possibly other environmental factors (Mares and Mrva 2014 ). Especially pre-
arvest sprouting can reduce the baking quality (Cannon et al. 2022 ), but the Hagberg
alling Number test, as applied in the industry and this study, cannot show whether pre-
arvest sprouting, late-maturity amylase, and/or retained pericarp amylase is the cause of a
ow Hagberg Falling Number score. 

 Methods 

e build on the economic and agronomic background presented in Section 2 to develop a
odel that estimates precipitation effects on the risk of a downgrading of bread and biscuit
heat to feed wheat due to a low Hagberg Falling Number ( Section 3.1 ). Next, we simulate
evenue reductions after such a downgrading to feed wheat that ultimately translates into
ower profits ( Section 3.2 ). 

.1 Estimation of precipitation effects 

his study focuses on precipitation effects close to harvest on the risk of a downgrading
ue to a low Hagberg Falling Number because of the well observed effects of precipitation
uring this period in the literature (Biddulph et al. 2008 ; Mares and Mrva 2008 ) and in
wiss wheat production (swiss granum 2021 ), while controlling for possible temperature- 
elated, genetical, and environmental effects (see Section 2.3 for our selection of model
ariables). More specifically, we use a linear probability model 4 with variety and location
s fixed effects to estimate overall precipitation effects on the risk of a downgrading of bread
nd biscuit wheat to animal feed wheat due to a low Hagberg Falling Number ( Equation
2) ) and cluster standard errors to correct for heteroscedasticity. The variety fixed effects
v absorb unobserved, variety-specific confounders (e.g. genetics (Cannon et al. 2022 )) and 
he location fixed effects γi absorb unobserved, location-specific environmental confounders 
e.g. soil texture (Mares and Mrva 2008 )). 

dvit = βCPit + ∂Zit + αv + γi + εivt (2) 
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The binary dependent variable divt shows whether bread or biscuit wheat from variety 
 harvested at location i in year t is downgraded to feed wheat due to a Hagberg Falling
umber score below the Swiss industry’s threshold of 220 s (1 = downgrading; 0 = no 
owngrading).5 Our explanatory variable of interest is cumulative precipitation CPit mea- 
ured over a certain period prior to harvest, the control variables Zit capture weather effects 
hat may be correlated with cumulative precipitation close to harvest CPit, and the error term 

ivt summarizes remaining effects. The parameters β and ∂ are estimated using the ordinary 
east squares estimator and standard errors are clustered by a ‘region x year’ variable to 
orrect for heteroskedasticity in a linear probability model (details follow below). We are 
articularly interested in β, which shows the marginal effect of cumulative precipitation 
lose to harvest CPit on the risk of a downgrading. 
We control for precipitation effects not captured in cumulative precipitation close to har- 

est CPit and for nonlinear temperature effects using optimal degree-days and heat degree- 
ays because these variables can also affect the Hagberg Falling Number and may be cor- 
elated with precipitation close to harvest CPit (Biddulph et al. 2007 ; Barnard and Smith 
012 ). Optimal degree-days measure temperature loads 6 between 5°C and an upper heat 
hreshold and heat degree-days measure temperature loads above this heat threshold (see 
.g. D’Agostino and Schlenker 2016 ). The literature shows that especially weather condi- 
ions at the end of the growing season, i.e. during the growth phases of grain development to 
arvest, affect the Hagberg Falling Number (Mares 1993 ; Barnard and Smith 2012 ; Olaerts 
t al. 2016 ). Therefore, we split the growing season into two periods, in which we measure 
eather exposure. Period 2 is close to harvest and is used to measure our variable of in- 
erest cumulative precipitation CPit and the control variables optimal degree-days and heat 
egree-days close to harvest. Period 1 lasts from planting to the beginning of period 2 and 
ontrols for cumulative precipitation, optimal degree-days and heat degree-days outside of 
eriod 2. Consequently, the control variables Zit consist of cumulative precipitation in pe- 
iod 1 and optimal degree-days as well as heat degree-days in period 2 and period 1 (in total
ve weather control variables in addition to the variety and site fixed effects). 
The model requires the definition of a specific day that splits the growing season into 

eriod 1 and period 2, and we also need to define a heat threshold to differentiate between 
ptimal degree-days and heat degree-days. The agronomic literature does not indicate clear 
efinitions of both parameters in the context of a downgrading due to a low Hagberg Falling 
umber. Thus, we run a data-driven grid search and estimate Equation (2) for each combi- 
ation of the two parameters (the number of days prior to harvest for the split into the two
eriods as well as the heat threshold for the differentiation between optimal degree-days and 
eat degree-days 7 ) and use the parameter combination for which the model has the largest 
oodness of fit, i.e. the lowest residual sum of squares. Note that these two parameters are 
onstant across locations and years; however, the exact dates for period 2 and period 1 are 
ocation- and year-specific because of location- and year-specific planting and harvest dates.
e verify this data-driven derivation of these two parameters by running robustness checks 

hat use previously applied weather measurement periods and other heat thresholds (see 
ection 5.3 for details). 

dentification strategy 
here are several reasons why the model described above is suitable to identify precipitation 
ffects on the risk of a downgrading due to a low Hagberg Falling Number. Firstly, it is a
educed-form model that only uses exogenous weather measurements as independent vari- 
bles, i.e. downgrading events do not affect weather exposure. Secondly, we select model 
ariables based on previous findings (see Section 2.3 ) and minimize omitted variable bias by 
ontrolling for a myriad of potential confounders that may be correlated with cumulative 
recipitation in period 2 CPit and affect the risk of a downgrading due to a low Hagberg 
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Figure 1. Locations of varietal field trials. 
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alling Number. More specifically, we control for observed nonlinear temperature effects 
sing optimal degree-days and heat degree-days in period 2 (close to harvest) and period
 (from planting to the beginning of period 2). We also control for observed precipitation
ffects in period 1. In addition, we control many unobserved confounders by using variety
nd location fixed effects. Thirdly, the model implicitly accounts for potential adaptations 
n management as a response to weather risk exposure (e.g. adjusting harvest dates, includ-
ng a harvest before full physiological ripeness with successive post-harvest drying in case
f forecasted prolonged precipitation; see also Section 4.1 ). Fourthly, a linear probability
odel offers a clear interpretation of coefficients and avoids the incidental parameter prob-

em that may cause biased estimates in the presence of variety and location fixed effects in
eneralized linear models such as logit or probit regression (Lancaster 2000 ; Angrist and
ischke 2009 ; Breen et al. 2018 ). Yet, we use generalized linear models as robustness checks
o compare sign and significance of estimated weather effects in the linear probability model
see Section 5.3 ). 
The use of field trial data supports the identification of pure precipitation effects on the

isk of a downgrading due to a low Hagberg Falling Number because field management is
tandardized, i.e. potentially confounding changes in input or output prices do not change
eld management and exposure to production risks (e.g. droughts) does not cause a devi-
tion from best management practices. Moreover, field trial data reduce the challenge of
easurement errors in the weather variables that might bias our estimates (Auffhammer 
t al. 2013 ) because we know exact field locations that we match with high-quality weather
ata. More specifically, we use homogenized and quality-checked gridded weather data pro- 
ided by experts in climatology and meteorology (Frei 2014 ). Measurement errors in the
inary dependent variable (1 = downgrading; 0 = no downgrading), if there are any, are un-
ikely to correlate with weather exposure and thus unlikely to bias our estimates (Hausman
001 ). 
Error terms in linear probability models are heteroskedastic and we expect them to be

patially autocorrelated. Therefore, we use a ‘region times year’ variable to cluster standard
rrors. More specifically, we allocate 5 locations to the west and 5 locations to the east
egion because the 10 experimental sites are placed along a west-east gradient (see Fig. 1 ).
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his results in 24 clusters (2 regions times 12 years) 8 that account for spatial autocorrelation 
ithin a region. 

.2 Simulation of profit reductions 

o assess the economic relevance of the identified effects, we simulate revenue reductions 
ue to a downgrading to feed wheat caused by a low Hagberg Falling Number by following 
quation (3) . The revenue reduction after such a downgrading of variety v harvested at 
ocation i in year t is denoted as �πvit . A downgrading to feed wheat reduces the producer 
rice �pvt by the year-specific difference between the price of the price class the variety is 
llocated to (i.e. Top , I , II , Biscuit ) and the price of feed wheat. The yield quantity of variety
 harvested at location i in year t is denoted as yvit . 

�πvit = �pvt ∗ yvit (3) 

These revenue reductions directly translate into lower profits and farm income because 
he major weather risk exposure is close to harvest, i.e. after all field inputs have been applied 
nd thus no changes in costs occur. 

 Data 

e combine agronomic data (described in Section 4.1 ) with gridded weather data (described 
n Section 4.2 ) to estimate precipitation effects on the risk of a downgrading due to a Hag-
erg Falling Number below 220 s. For the simulation of revenue reductions after such a 
owngrading, we combine agronomic data with price data (described in Section 4.3 ). 

.1 Agronomic data 

e use a panel dataset from the official Swiss wheat varieties trial network provided by 
groscope (the Swiss Confederation’s center of excellence for agricultural research) and 
wiss granum (Swiss industry organization for cereals, oilseeds, and protein crops) 9 that 
onsists of 1,859 bread and biscuit winter wheat observations of commercially available 
arieties measured at 10 sites between 2008 and 2019. The wheat varieties trial network 
ims to evaluate the performance of established and new wheat varieties under conven- 
ional rain-fed agriculture at the 10 representative sites shown in Fig. 1 . Site locations reflect 
he heterogeneity in agri-environmental conditions in Swiss winter wheat production and 
re in vicinity to major winter wheat production regions, i.e. in the lowlands as shown in 
ig. 1 . 
The portfolio of commercially available varieties is the same at each location in a given 

ear so that spatial variability in production conditions is reflected. The portfolio composi- 
ion (i.e. varieties considered) varies between years, giving due consideration to the introduc- 
ion and recommendation of new winter wheat varieties. While the portfolio composition 
hanges over time, each commercially available variety is part of the panel for several years 
o reflect temporal variability of weather conditions. In our analysis, we follow Swiss market 
onditions and assume that bread and biscuit wheat is downgraded to feed wheat if observ- 
ng a Hagberg Falling Number below 220 s. The Hagberg Falling Number was assessed 
n the field trial network’s laboratory for each harvested plot, which have a size between 
.5 and 10.2 m2 . We refer to Herrera et al. (2018 , 2020 ) for more details regarding the 
etup of the field trial network. Table 1 provides sample statistics including the number of 
owngrading events and Figure A1 in the online Appendix shows historical distributions of 
agberg Falling Numbers and of crop yield quantities. 
Management in the varieties trial network is standardized and follows the recommended 

est management practice for conventional (i.e. nonorganic) winter wheat production in 

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae008#supplementary-data
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Table 1. Overview of downgrading events, 2008–2019. 

Bread wheat 

Price class Top I II Biscuit wheat Total

Observations 697 652 377 105 1,859 
Number of varieties 13 12 11 2 38 
Downgrading events 30 26 22 8 86 
Share of downgraded observations 4.30% 3.99% 5.84% 7.62% 4.63% 

Note: Bread and biscuit wheat with a Hagberg Falling Number below 220 s is downgraded to feed wheat. 
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witzerland. More specifically, planting (around mid-October) and harvest (between July 
nd August in the consecutive year) takes place under favorable weather conditions, the
mount of nitrogen fertilizer is up to 175 kg per hectare, and pesticides are applied if nec-
ssary. Planting and harvest dates differ between site and year (see also Figure A2 in the
nline Appendix) but are the same for all varieties at a certain site and year. In the varietal
rial network, there is no response in management decisions to changes in input or out-
ut prices and production risks do not cause a deviation from best management practices.
heat can be harvested a few days before full physiological ripeness and post-harvest dried

o prevent weather risk exposure that may affect the Hagberg Falling Number (Donaldson
968 ). In case of such an early harvest at a specific site, all varieties are still harvested on
he same day at the affected site. An early harvest as a response to forecasted unfavorable
eather conditions is also observed in practice 10 and implicitly accounted for in our model
see Section 3.1 ). We refer to Herrera et al. (2018 , 2020 ) for more details regarding the field
anagement in the Swiss wheat varieties trial network. 
The here used dataset is representative for Swiss winter wheat production using con-

entional management (i.e. based on the use of pesticides) that follows the recommended 
est management practices also applied in this field trial. While there is heterogeneity in
wiss wheat production management, e.g. organic as well as low- and no-pesticide produc- 
ion (e.g. Möhring and Finger 2022 ), the conventional production used in the field trial
s representative, especially with respect to climate risk exposure. More specifically, most 
heat producers operate under similar management practices as applied in the field trial,

ncluding a harvest before full physiological ripeness and use of the same varieties (swiss
ranum 2020). Moreover, all field inputs are applied before the risk period close to harvest
ommences, i.e. field inputs cannot be adjusted close to harvest. A difference between man-
gement of field trials and practice is the field size, but field trial data can still provide useful
nsights in case data from practice is not available (Lobell et al. 2011b ). 

.2 Weather data 

e derive site-specific daily precipitation amounts, daily minimum temperature, and daily 
aximum temperature from homogenized and quality-checked gridded datasets (spatial 
esolution of 1 ×1 km) provided by the Federal Office of Meteorology and Climatology
Frei 2014 ). Each grid in the dataset contains weather variables based on several surround-
ng weather stations, whose daily weather measurements are quality checked and removed 
f they are of low quality (e.g. due to technical failure of measurement instruments) and in-
erpolation particularly takes into account Swiss topography and microclimates. Thus, this 
omogenized dataset provided by experts is of highest accuracy and does not contain miss-
ng values that bias the estimation of weather effects (Auffhammer et al. 2013 ).11 Weather
easurements differ between sites and years but are equal for varieties grown at the same
ite and year. 

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae008#supplementary-data
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Table 2. Overview of weather dat a, 20 08–2019. 

min mean median max Sd 

Period 2 Precipitation 15.92 101.45 102.30 242.07 49.90 
Optimal DD 2,046 2,359 2,370 2,660 126.20 
Heat DD 0 43 26 153 37.90 

Period 1 Precipitation 399.3 663.8 631.7 1,094 140.56 
Optimal DD 4,506 5,656 5,626 6,893 525.35 
Heat DD 0 13 11 55 10.57 

Note: Period 2 considers weather exposure 31 days prior to harvest and period 1 from planting to the beginning 
of period 2. Precipitation is measured in millimeters and both forms of degree-days are temperature loads based 
on measurements in°C. The temperature threshold to differentiate between optimal- and heat degree-days is at 
27°C and was derived with the numerical method explained in Section 3.1 so that optimal degree-days measure 
temperature loads between 5°C and 27°C and heat degree-days measure temperature loads above 27°C (see also 
section Results). DD is degree-days and sd standard deviation. 
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We use daily minimum and maximum temperatures to calculate the control variables 
ptimal degree-days and heat degree-days (see Section 3.1 ). More specifically, we follow 

revious research (e.g. Tack et al. 2015 ; Gammans et al. 2017 ; Ortiz-Bobea et al. 2018 ; 
ucheli et al. 2022 ) and estimate daily temperature curves 12 to consider intraday temper- 
ture variation, which is essential in estimating weather effects in crop production (Lobell 
007 ). Subsequently, we derive the daily temperature load for optimal degree-days and heat 
egree-days by calculating the corresponding areas below the estimated temperature curves 
see Snyder (1985) and D’Agostino and Schlenker (2016) for illustrations). Finally, we ag- 
regate the daily temperature loads of optimal degree-days and heat degree-days to derive 
ccumulated optimal degree-days and heat degree-days as shown in Equation (2 ). Table 2 
rovides summary statistics of the weather data measured at the 10 locations. 

.3 Price data 

he Swiss industry organization for cereals, oilseeds, and protein crops (swiss granum) pub- 
ishes agreed producer reference prices for each price class (i.e. Top, I, II, Biscuit, Feed ) 
longside a list of commercially available wheat varieties that also indicates the price class 
o which a variety is allocated to.13 These producer reference prices are a good indicator of 
ealized producer prices (see Section 2.2 ). As shown in Figure A3 in the online Appendix,
roducer reference prices did not change between 2014 and 2019 (last year in our panel) 
nd show very little volatility prior to 2014. All prices are in Swiss francs per 100 kg (Swiss
rancs/100 kg). 

 Results 

o begin this section, we show the estimated precipitation effects on the risk of a downgrad- 
ng based on Equation (2) . After that, we illustrate the economic relevance of a downgrading 
ased on the simulation of revenue reductions following Equation (3) . Further, we present 
 summary of robustness checks that are discussed in detail in Section A3 of the online 
ppendix. 

.1 Estimated precipitation effects on the risk of a downgrading 

Fig. 2 shows coefficient plots for the estimated marginal effects of cumulative precipita- 
ion close to harvest (period 2), denoted as β in Equation (2) , on the risk of a downgrading 
f bread and biscuit wheat to animal feed wheat due to a Hagberg Falling Number below 

20 s. A black point marks the point estimate of the estimated β and a vertical line in blue 
orange) illustrates the 95 per cent (99 per cent) confidence interval. An effect is significant 
t the 5 per cent (1 per cent) level, if the 95 per cent (99 per cent) confidence interval in

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae008#supplementary-data
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Figure 2. Estimated cumulative precipitation effects close to harvest on the risk of a downgrading. 
Note: In the upper part, black points show the average marginal precipitation effect in period 2 (our main 
variable of interest and denoted as β in Equation 2 ), the vertical blue lines mark 95 per cent confidence 
intervals and vertical orange lines marks 99 per cent confidence intervals. Model 1 (first column) is our main 
specification in which control variables (optimal- and heat degree-days in period 1 and period 2, precipitation 
in period 1) and choice of fixed effects (location and variety) are based on agronomic findings. Selected 
control variables and fixed effects of a specific model are marked with a black square in the table. In models 
2–6, we remove control variables to show the sensitivity of our estimated marginal average precipitation 
effect in period 2 on the risk of a downgrading. Model 2 excludes precipitation in period 1, Model 3 the 
temperature variables, Model 4 excludes all weather control variables, Model 5 only considers the variety fix 
effects, and Model 6 has no control variables and fixed effects. Parameter definitions (season split and heat 
threshold) are derived for each model with a grid search. The days prior to harvest show where the growing 
season is split into period 1 and period 2 and the heat threshold is used to differentiate between optimal 
degree-days and heat degree-days. 
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lue (orange) is above the dashed horizontal line. Model 1 is our main specification because
ts selection of control variables is based on previous findings in the literature (see Sections
.3 and 3.1 ). We then remove control variables and fixed effects in Models 2–6 to show
he sensitivity of the estimated marginal effects of cumulative precipitation close to harvest
period 2). 
For Model 1, our data-driven split of the growing season into period 2 (close to harvest)

nd period 1 (from planting to the start of period 2) is at 31 days prior to harvest (see
ection 3.1 for details on the data-driven split of the growing season). This split is highly
lausible from an agronomic point of view because weather conditions close to harvest have
he largest impact on the Hagberg Falling Number (Mares 1993 ; Barnard and Smith 2012 ;
laerts et al. 2016 ). Thus, we estimate an increased risk of a downgrading due to a Hagberg
alling Number below 220 s of ca. 0.1 percentage points for each millimeter of precipitation
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Figure 3. Profit reductions after a downgrading (a) and frequency of downgrading events (b). 
Note : Price classes Top , I and II are bread wheat. Subpanel (a) on the left shows simulated profit reductions 
with a boxplot for each price class. A box shows the interquartile range from the 25th percentile to the 75th 
percentile. The bold line within a box represents the median. CHF/ha means Swiss francs per hectare. 
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uring the 31 days prior to harvest ( = period 2). This estimated effect is significant at the 5
er cent significance level (the 95 per cent confidence interval in blue is above the horizontal 
ashed line). 
To illustrate the effect of cumulative precipitation aggregated over the 31 days prior to 

arvest at the 10 field trial sites, we multiply the site- and year-specific observed precipita- 
ion amounts with the estimated marginal effect. This shows that cumulative precipitation 
ggregated over the 31 days prior to harvest has increased the risk of a Hagberg Falling 
umber below 220 s, i.e. the risk of a downgrading, between 1.76 percentage points (dry 
ummer of 2015) and 26.74 percentage points (wet summer of 2014, which also caused 
any downgrading events in practice (swiss granum, 2021). See Section A2 of the online 
ppendix for more details. 
The omission of control variables and fixed effects (Models 2–6) from our main model 

Model 1) reveals only little sensitivity of the point estimates for cumulative precipitation 
n period 2 and confidence intervals become narrower with the omission of the weather 
ariable controls, indicating multicollinearity between cumulative precipitation in period 2 
nd the weather variable controls ( Fig. 2 ). Moreover, the split of the growing season into 
eriod 2 (close to harvest) and period 1 (from planting to the beginning of period 2) remains 
onstant at 31 days prior to harvest. A comparison of the goodness of fit between Model 5 
nd Model 6 shows a strong effect of the variety on the risk of a Hagberg Falling Number 
elow 220 s. Model outputs are presented in Section A2 of the online Appendix. 

.2 Economic relevance of a downgrading 

he left subpanel in Fig. 3 shows simulated profit reductions after a downgrading due to a 
agberg Falling Number below 220 s and per price class (see Section 2.2 for more infor- 
ation about price classes), which we derive using Equation (3) . The right subpanel shows 
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Table 3. Expected profit reduction, 2008–2019. 

Top I II Biscuit All 

Expected profit reduction in CHF/ha 54.02 44.39 56.41 86.13 52.15 

Note: All is the expected profit reduction of all observations. CHF/ha is Swiss francs per hectare. 
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he frequency of downgrading events due to a Hagberg Falling Number below 220 s per
ear and price class. 
Both subpanels reveal that all price classes can be affected by a downgrading to feed
heat. A downgrading due to Hagberg Falling Number below 220 s causes large profit
eductions (left subpanel) and is therefore of highest economic relevance. The largest sim-
lated profit reduction is 1,445 Swiss franc per hectare (representing ca. 40 per cent of the
otal expected revenue) and from a variety belonging to the price class Top (highest price but
sually lower yields compared to varieties in other price classes). Median profit reductions 
re also largest for the price class Top , followed by Biscuit (low price but comparatively high
ields), I and II . Precipitation during the growth phases relevant for the risk of a downgrad-
ng barely affects crop yield quantity (Barnabás et al. 2008 ; Farooq et al. 2014 ; Varga et al.
015 ) so that a possible natural hedge between a downgrading event and yield quantity, if
here is any, would change the result only minimally. The subpanel on the right in Fig. 3
see also Table 1 ) shows that downgrading events due to a Hagberg Falling Number below
20 s are rare and occur irregularly. More specifically, the risk of such a downgrading can
e idiosyncratic (downgrading of few observations within a location) or systemic (down- 
rading of many observations within and across locations) within a year. As shown in Fig.
 b, a large share of observations was downgraded in 2014 (systemic risk), which was also
bserved in practice (swiss granum 2021 ), whereas only few downgrading events occurred
n 2008 and 2009 (idiosyncratic risk). There are also years (2012, 2013, 2015, 2016, and
018) without a single downgrading in our dataset as shown in Fig. 3 b. Table 3 shows the
xpected loss in revenues for each price class to provide a measure that jointly reflects the
conomic severity and frequency of downgrading events. 

.3 Summary of robustness checks 

everal robustness checks confirm the significant effect of cumulative precipitation close to 
arvest on the risk of a downgrading due to a Hagberg Falling Number below 220 s. This
ection summarizes these robustness checks that are presented in detail in Section A3 of the
nline Appendix. 
First, our main model specification (Model 1 in Fig. 2 ) might have an omitted variable

ias, i.e. there might be other variables that are correlated with cumulative precipitation
n period 2 (close to harvest) and affect the risk of a downgrading (e.g. cold temperatures,
ime trend). To begin, we add freezing degree-days (temperature load below 0°C) as another
eather control 14 because temperatures below 0°C might also affect the Hagberg Falling 
umber (Craven et al. 2007 ). We find that freezing degree-days have no effect on the risk
f a downgrading due to a Hagberg Falling Number below 220 s and do not change the
stimated cumulative precipitation effect in period 2. Next, we add a linear time trend and
nd that this trend has no significant effect on the risk of a downgrading due to a Hagberg
alling Number below 220 s and does not change the estimated cumulative precipitation
ffect in period 2. A quadratic time trend provides the same findings. See Section A3.1 of
he online Appendix. 
Second, our main model specification (Model 1 in Fig. 2 ) assumes a linear cumula-

ive precipitation effect on the risk of a downgrading. We verify this assumption with
 model specification that allows a nonlinear cumulative precipitation effect in period 2
ithin a linear probability model. The result shows that the use of a linear cumulative
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recipitation effect, as used in our main specification, is appropriate. See Section A3.2 of 
he online Appendix. 
Third, period 1 in our main specification aggregates weather effects from planting to the 

eginning of period 2. This long period might cause an aggregation bias and hide some rel- 
vant precipitation effects. Therefore, we split period 1 into two subperiods using different 
plit criteria. Splitting period 1 does not affect the estimated cumulative precipitation effect 
n period 2 and only precipitation effects 3 days after the end of period 2 have a significant 
ffect on the risk of a downgrading. This shows that our main specification captures most 
elevant precipitation effects and indicates that precipitation amounts earlier in the year 
ave no effect on the risk of a downgrading due to a Hagberg Falling Number below 220 
. This is also in line with the agronomic literature (Mares 1993 ; Barnard and Smith 2012 ; 
laerts et al. 2016 ). See Section A3.3 of the online Appendix. 
Fourth, in our main specification presented above we use a linear probability model be- 

ause of the clearer interpretation of coefficients and the limitations associated with gen- 
ralized linear models in the presence of fixed effects (see also Angrist and Pischke 2009 
nd Breen et al. 2018 , who show the advantages of using a linear probability model). Yet,
n a robustness check, we verify sign and significance of estimated cumulative precipitation 
ffects in period 2 using logit, probit, and Poisson regression models. These models con- 
rm the positive and significant cumulative precipitation effect in period 2 on the risk of a 
owngrading due to a Hagberg Falling Number below 220 s. See Section A3.4 of the online 
ppendix. 
Fifth, we run grid searches using the maximum number of correctly predicted downgrad- 

ng events instead of the minimum residual sum of squares used in our main specification to 
efine the model parameters (split of growing season, heat threshold). This results in equal 
r similar parameter definitions, and very similar estimated effects of cumulative precipita- 
ion in period 2 compared to our main model (Model 1 in Fig. 2 ). As an alternative to the
ata-driven grid search, we define the split of the growing season at 10 and 20 days prior to
arvest (similar to the weather risk exposure measured in Barnard and Smith (2012) ) and 
dditionally consider a split 40 days prior to harvest. Estimated cumulative precipitation 
ffects for a period 2 lasting from harvest until 10, 20, and 40 days prior to harvest are
ery similar to the estimated effect in our main specification in which period 2 lasts from 

arvest to 31 days prior to harvest. In line with the third robustness check, a split too far
way from harvest results in nonsignificant precipitation effects in period 2 and indicates 
hat precipitation amounts too far from harvest have no effect on the risk of a downgrad- 
ng. Additionally, we change the heat threshold, used to differentiate between optimal- and 
eat degree-days), and find no effect on the estimated precipitation effects in period 2. See 
ection A3.5 of the online Appendix. 
Finally, we run our main specification (Model 1 in Fig. 2 ) without data from the catas- 

rophic year 2014 to exclude that our finding solely results from the observations made in 
his year. Using this subsample, we still find significant cumulative precipitation effects close 
o harvest. See Section A3.6 of the online Appendix. 

 Discussion 

his section addresses the external validity of our results and then summarizes the challenges 
nvolved in the management of the risk of a downgrading due to a low Hagberg Falling 
umber at farm level. 
Our results based on Swiss field trial data are representative for conventional Swiss wheat 

roducers (see Section 4.1 ) and we expect our findings to be transferable to other wheat 
arkets but that the magnitude of precipitation effects on the risk of a downgrading and 
he economic relevance of a downgrading vary due to different production conditions (e.g.
eather exposure, varieties, management) and different market conditions (e.g. level of 
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arket protection, different and more volatile wheat prices, different thresholds for the 
agberg Falling Number). 
Managing the risk of a downgrading due to a low Hagberg Falling Number at farm

evel is not straightforward, involves trade-offs, and faces limits. At the beginning of the
rowing season, the choice of the variety is an important factor affecting the risk of such a
owngrading (e.g. Biddulph et al. 2008 ; Mares and Mrva 2008 ; Barnard and Smith 2012 ; Ji
t al. 2018 ). However, there are trade-offs between a variety’s vulnerability to the causes of
 low Hagberg Falling Number (see Section 2.3 ) and other characteristic such as the yield
otential.15 Current breeding efforts have the potential to minimize these trade-offs (e.g.
ePauw et al. 2012 ; Mares and Mrva 2014 ) and our findings underline the relevance of
onsidering the risk of a downgrading due to a low Hagberg Falling Number in breeding
rograms, especially for varieties used in regions with increasing heavy precipitation events 
lose to harvest as it is the case in Switzerland (Scherrer et al. 2016 ). During the growing
eason, there are no options to reduce the risk of a downgrading due to a low Hagberg
alling Number with field inputs because the major risk exposure occurs after all field inputs
ave been applied. 
Harvest should be completed as soon as possible because the risk of a downgrading in-

reases with a delayed harvest (Olaerts et al. 2016 ). A large harvest capacity can therefore
educe the risk of a downgrading (Donaldson 1968 ). Farmers can increase their harvest
apacity by using more combines and infrastructure for post-harvest drying because this 
llows a harvest a few days prior to full physiological ripeness. However, increasing the
umber of combines and using post-harvest drying infrastructure increases production costs 
nd fails to reduce the risk of a downgrading during prolonged unfavorable weather condi-
ions (Donaldson 1968 ; Davis and Patrick 2002 ). In addition to these on-farm management
ptions, insurance solutions that cover the risk of a downgrading due to a low Hagberg
alling Number can buffer the resulting financial losses and are offered to Swiss winter
heat producers.16 Whether the use of more combines, post-harvest drying infrastructure 
nd insurance solutions reduces the financial risk of a downgrading due to a low Hagberg
alling Number cannot be answered with the dataset applied in this study but opens an
nteresting line for future research. 

 Conclusion 

his paper estimates precipitation effects on the risk of a downgrading of bread and biscuit
heat to animal feed wheat due to a low Hagberg Falling Number and simulates profit
eductions that result from such a downgrading. Using data from the Swiss winter wheat
eld trial network, we find cumulative precipitation aggregated over the 31 days prior to
arvest to increase the risk of a downgrading on average by 0.1 percentage points for each
illimeter of precipitation. We estimate an expected loss of 52 Swiss francs per hectare
cross all observations. In specific years, however, downgrading can result in large economic 
osses of up to 1,445 Swiss francs per hectare (representing ca. 40 per cent of the total
xpected revenue). This highlights the need to consider weather-dependent crop quality in 
conomic risk assessments, informs various actors in food systems about the underlying risk
xposure, and provides a basis for improved risk management. 
Wheat producers should consider the risk of a downgrading due to a low Hagberg Falling
umber in their risk management strategy as they bear large potential financial losses. Man-
ging the risk of a downgrading at farm level is not simple and involves many trade-offs.
specially variety choice and the breeding of varieties that are more robust to the causes
f a low Hagberg Falling Number have the potential to improve risk management. Thus,
he risk of a downgrading due to a low Hagberg Falling Number also affects actors asso-
iated with input supply such as wheat breeders, seed distributors, and extension services.
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oreover, it also affects the supply chain management of downstream actors (e.g. millers,
etailers), particularly after large-scale downgrading events in protected markets. 
Agricultural policy could consider the effects of weather-dependent crop quality on 

he financial well-being of farmers and not only consider crop yield quantity. Policymak- 
rs can support farmers’ risk management by establishing a legal framework that incen- 
ivizes the breeding of improved varieties and the implementation of tools, such as in- 
urance products, that reduce the risk of a downgrading due to a low Hagberg Falling 
umber. Moreover, policymakers can support data collection of yield quantity and qual- 

ty, also from observations made in practice. These data can provide a valuable basis for 
mproved risk assessments and improvements of risk management tools such as insurance 
olutions. 
Future research should consider price-relevant yield quality characteristics in economic 

isk assessments, identify the drivers of yield quality, and develop improved and cost-efficient 
ools to manage downside risks resulting from low yield quality. Field research can provide 
 valuable basis for this and should continue to elucidate all environmental, managerial,
nd genetic factors influencing price-relevant yield quality characteristics. Future research 
hould also estimate climate change effects on yield quality, also under the consideration 
f changes in the duration of growing and harvesting seasons and farmers adaptations.
urthermore, similar research in other markets than Switzerland and for other crops with 
rice-relevant quality characteristics such as rice, canola, and horticultural products shall 
e conducted. 
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nd Notes 

 There is little chance that the risk of a downgrading affects production costs because risk exposure 
occurs towards the end of the growing season where usually no further crop management takes place.

 The reference prices are published here: https://www.swissgranum.ch/zahlen/preise (only available in 
German or French and last accessed 05.01.2024).

 The agronomic performance, comprising yield and resistance to diseases, and quality parameters are 
evaluated within the official Swiss wheat varieties trial network. Resistance to the risk of a downgrad- 
ing plays a minor role for the allocation of a variety to a price class. More details can be found in

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae008#supplementary-data
https://github.com/AECP-ETHZ/Precipitation-causes-quality-losses-of-large-economic-relevance-in-wheat-production/blob/main/Code_WheatQuali.R
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the list of recommended varieties published here: https://www.swissgranum.ch/richtlinien/sorten#c45
(only available in German or French and last accessed 05.01.2024). See e.g. Möhring and Finger
(2022) for discussion on the Swiss wheat market.

 Additionally, we run logit, probit, and Poisson regression models as robustness checks. They all con-
firm the findings of the linear probability model. See subsection ‘Identification strategy’ for reasons
why the linear probability model is better for our research question and Section 5.3 for a summary
of robustness checks.

 We here estimate an average effect across all varieties while controlling for variety-specific effects. The
dataset exploited here does not contain enough observations per variety to provide reliable variety-
specific effects.

 Temperature loads reflect by how much and for how long temperatures exceed a temperature thresh-
old (D’Agostino and Schlenker 2016 ).

 In the grid search, we consider a split of the growing season at 1–60 days prior to harvest fol-
lowing agronomic suggestions (see Section 2.3 ) and a split of optimal- and heat degree-days at
18–32°C.

 We do not cluster by year because a small number of clusters (here 12 years) may result in too narrow
standard errors. We verified our results by using ‘location times year’ clusters (10 locations times 12
years = 120 clusters). Using these 120 ‘location times year’ clusters does not change our findings.

 More information about the field trial sites of Agroscope can be found here: https://www.agroscope.
admin.ch/agroscope/en/home/topics/plant-production/field-crops/crops/straw-cereals%20.html (last 
accessed 03.01.2024) and the website of Swiss granum can be accessed here: https://www.
swissgranum.ch/(only available in German or French and last accessed 03.01.2024).

0 Farmers harvest before full physiological ripeness in practice, see e.g. https://www.agrarheute.com/
pflanze/getreide/6-tipps-so-erkennen-landwirte-getreide-erntereif-608352 (only available in German 
and last accessed 03.01.2024).

1 Documentation that is more detailed can be found here: https://hyd.ifu.ethz.ch/research-data-models/
meteoswiss.html (last accessed February 8, 2022).

2 These temperature curves are based on two sine curves. The first sine curve starts at the daily mini-
mum temperature and goes to the daily maximum temperature. The second sine curve goes from the
daily maximum temperature to the daily minimum temperature of the consecutive day. We approxi-
mate daily temperature curves because high resolution temperature data (e.g. hourly observations) is
currently not available.

3 Current and historical producer reference prices can be found here: https://www.swissgranum.ch/
zahlen/preise (last accessed 02.01.2024, only available in German and French). Current and historical 
wheat varieties commercially available in Switzerland can be found here: https://www.swissgranum.
ch/richtlinien/sorten (last accessed 02.01.2024, only available in German and French).

4 We also considered hail events as another weather control variable and found hail not to affect the
model output. However, only 32 out of 1,859 observations indicate a hail event so that the database
of this robustness check is not of sufficient quality to be presented here.

5 Preferences for varieties are becoming more diverse in Switzerland (swiss granum 2020 ). How-
ever, many wheat producers preferred varieties with high yield potentials and high risk of a
downgrading during the catastrophic year 2014. See e.g.: https://www.bauernzeitung.ch/artikel/
landwirtschaft/grosse-auswuchsgefahr-beim-weizen-367022 (only available in German and last ac- 
cessed 18.04.2022) 

6 For instance, Swiss hail insurance offers a product that covers the financial losses after a downgrading:
https://www.hagel.ch/de/versicherungen/ackerbau/(only available in German, French or Italian and 
last accessed 06.01.2024).
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